Self-aligned, extremely high frequency III-V metal-oxide-semiconductor field-effect transistors on rigid and flexible substrates.

نویسندگان

  • Chuan Wang
  • Jun-Chau Chien
  • Hui Fang
  • Kuniharu Takei
  • Junghyo Nah
  • E Plis
  • Sanjay Krishna
  • Ali M Niknejad
  • Ali Javey
چکیده

This paper reports the radio frequency (RF) performance of InAs nanomembrane transistors on both mechanically rigid and flexible substrates. We have employed a self-aligned device architecture by using a T-shaped gate structure to fabricate high performance InAs metal-oxide-semiconductor field-effect transistors (MOSFETs) with channel lengths down to 75 nm. RF measurements reveal that the InAs devices made on a silicon substrate exhibit a cutoff frequency (f(t)) of ∼165 GHz, which is one of the best results achieved in III-V MOSFETs on silicon. Similarly, the devices fabricated on a bendable polyimide substrate provide a f(t) of ∼105 GHz, representing the best performance achieved for transistors fabricated directly on mechanically flexible substrates. The results demonstrate the potential of III-V-on-insulator platform for extremely high-frequency (EHF) electronics on both conventional silicon and flexible substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Main determinants for III-V metal-oxide-semiconductor field-effect transistors (invited)

Lacking a suitable gate insulator, practical GaAs metal-oxide-semiconductor field-effect transistors MOSFETs have remained all but a dream for more than four decades. The physics and chemistry of III–V compound semiconductor surfaces or interfaces are problems so complex that our understanding is still limited even after enormous research efforts. Most research is focused on surface pretreatmen...

متن کامل

Complementary Metal–Oxide–Semiconductor Thin-Film Transistor Circuits From a High-Temperature Polycrystalline Silicon Process on Steel Foil Substrates

We fabricated CMOS circuits from polycrystalline silicon films on steel foil substrates at process temperatures up to 950 C. The substrates were 0.2-mm thick steel foil coated with 0.5m thick SiO2. We employed silicon crystallization times ranging from 6 h (600 C) to 20 s (950 C). Thin-film transistors (TFTs) were made in either self-aligned or nonself-aligned geometries. The gate dielectric wa...

متن کامل

InxGa1-xSb channel p-metal-oxide-semiconductor field effect transistors: Effect of strain and heterostructure design

InxGa1-xSb is an attractive candidate for high performance III-V p-metal-oxide-semiconductor field effect transistors (pMOSFETs) due to its high bulk hole mobility that can be further enhanced with the use of strain. We fabricate and study InxGa1 xSb-channel pMOSFETs with atomic layer deposition Al2O3 dielectric and self-aligned source/drain formed by ion implantation. The effects of strain and...

متن کامل

A Self-Aligned InGaAs Quantum-Well Metal–Oxide–Semiconductor Field-Effect Transistor Fabricated through a Lift-Off-Free Front-End Process

We present a novel n-type InGaAs quantum-well metal–oxide–semiconductor field-effect transistor (QW-MOSFET) fabricated by a self-aligned gate-last process and investigate relevant Si-like manufacturing issues in future III–V MOSFETs. The device structure features a composite InP/ Al2O3 gate barrier with a capacitance equivalent thickness (CET) of 3 nm and non alloyed Mo ohmic contacts. We have ...

متن کامل

Performance enhancement of multiple-gate ZnO metal-oxide-semiconductor field-effect transistors fabricated using self-aligned and laser interference photolithography techniques

The simple self-aligned photolithography technique and laser interference photolithography technique were proposed and utilized to fabricate multiple-gate ZnO metal-oxide-semiconductor field-effect transistors (MOSFETs). Since the multiple-gate structure could improve the electrical field distribution along the ZnO channel, the performance of the ZnO MOSFETs could be enhanced. The performance o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 12 8  شماره 

صفحات  -

تاریخ انتشار 2012